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Electrical Resistivity Response Due to Elastic-Plastic Deformations*

R. B. Stout
Lawrence Livermore National Laboratory

P 0 Box 808, L-200
Livermore, CA 94550

Abstract

The electrical resistivity of many materials is sensitive to changes in
the electronic band configurations surrounding the atoms, changes in the
electron-phonon interaction cross-sections, and changes in the density of
intrinsic defect structures. These changes are most directly dependent on
interatomic measures of relative deformation. For this reason, a model for
resistivity response is developed in terms of interatomic measures of relative
deformation. The relative deformation consists of two terms, a continuous
function to describe the recoverable displacement between two atoms in the
atomic lattice structure and a functional to describe the nonrecoverable
displacement between two atoms as a result of interatomic discontinuties from
dislocation kinetics. This model for resistivity extends the classical
piezoresistance representation and relates electric resistance change directly
to physical mechanisms. An analysis for the resistivity change of a thin foil
ideally embedded in a material that undergoes elastic-plastic deformation is
presented. For the case of elastic deformations, stress information in the
material surrounding the thin foil is inferred for the cases of pure strain
coupling boundary conditions, pure stress coupling boundary conditions, and a
combination of stress-strain coupling boundary conditions.

*Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.



I. Introduction

In many high-strain rate applications that involve shock loading it is
important to perform measurements that can be used to infer the local state of
stress. Such measurements support physical intuitions and provide checks on
predictive analysis, whether numerical or analytical, of the stress state.
However, equally important, is the use of stress measurements to understand
and to correctly model the deformation response of various materials. Since
stress is a symmetric second order tensor, it is not a trivial task to design
a gage that measures the six independent components of stress. In fact, a
gage that measures stress directly and is uncoupled from other effects is not
believed possible. For example, to sense a stress change involves an
instrument that actually measures or has a coupling with a deformation
response.

The particular case of interest here is the use of piezoresistive
materials in stress gage design. There are several metallic and organic
materials that have a significant electrical resistance change that has been
correlated with pressure, hence, the name pilezoresistivity [1-4].

However, the intrinsic physical mechanisms responsible for the electrical
resistivity are more directly dependent on various deformation measures and
the density of various defect structures rather than the stress tensor

[4-11]. Thus, it is logical to initially represent the electrical resistivity
response of a material in terms of deformation dependent functions and defect
structure dependent functions. This is the approach that is taken in Section
11, where the deformation includes both recoverable (elastic) and
nonrecoverable (plastic) deformations. The nonrecoverable deformation depends
on the defect structure, which for the analysis of Section II is limited to
dislocation density effects. This dislocation dependence restricts the
generality of the model to essentially metallic piezoresistance materials such
as ytterbium and manganin. Consequently, nonrecoverable deformations from
microcrack density effects, which are a more probable dependence in the
resistivity response of organic materials, is not represented.



There have been several models and discussions of elastic piezoresistivity
[1,2,12-18]. The elastic-resistivity models follow the approach of Bridgeman's
early work [12], and take a phenomenological viewpoint of representing the
observed resistivity change as a function of stress. Much of the laboratory
experimental effort has been directed toward understanding, applying, and
calibrating the piezoresistivity response for purposes of measuring stress
during shock loading [14-29]. The field applications of the piezoresistance
response are for stress measurements from chemical and/or nuclear explosives
[30-37]. In addition to the elastic-resistivity response, observations of
resistivity changes during plastic deformations [17,23] showed a permanent, or
nonrecoverable, change in resistivity. It is important to understand the
origin and the representation of these nonrecoverable or permanent changes in
resistivity for applications involving the measurement of residual stress
states [34]. Thus, a change in gage resistivity after a shock experiment is
completed could result from a residual stress state on the gage and/or a
nonrecoverable deformation of the piezoresistance material in the gage.

This nonrecoverable resistivity, as well as the recoverable resistivity,
has been recently studied in greater detail by Chen, Gupta, and Miles [23].

In this work, the resistivity response of three difficult materials, manganin,
ytterbium, and constantan, were experimentally studied for quasi-static,
elastic-plastic, unaxial strain histories. In addition to the experiments, a
phenomenological model for the elastic-plastic resistivity response of these
three materials was proposed. The model represented the change in resistivity
as a function expressed in terms of stress variables and plastic strain
variables. As developed, this model [23] is rate-independent. Futhermore,
the hysteresis resistivity response that was observed during unloading and
reloading from a plastic strain was not represented by this model. The type
of resistance hysteresis illustrated by the experimental data suggests that
the dislocation density around Frank-Read sources is changing during
unloading. If this were the case, then the resistivity response is probably
strain-rate dependent. Furthermore, the resistivity hysteresis loop during
initial unloading has a slope that is different from the initial elastic
loading resistivity slope and from the initial reloading resistivity slope.
Thus, for purposes of understanding and interpreting residual stress, there is
a need to extend the elastic-plastic resistivity model of Chen, Gupta, and



Miles [23]. An extension is developed in Section II where the physical
mechanisms of electron resistivity are discussed relative to stress gage
design.

In Section III, the problem of relating a measured resistivity change to
a stress state on a gage is discussed and shown not to be necessarily unique.
In general, and if possible, the gage must be designed to uniquely isolate or
separate the stress tensor components that are of interest and are to be
measured. Otherwise, the resistance measurement from a single gage of a
particular material is coupled to all components of the stress or strain
tensor through the elastic-resistivity tensor of the material and the
geometrical size changes of the gage. For the special case of resistivity
changes due only to the three independent diagonal elements of the strain
tensor, or the stress tensor for the elastic case (no shear resistivity
dependence), it is conceptually possible to measure the resistivity response
from three different materials and have three independent and simultaneous
measurements. Then, if the resistivity tensor of each material is independent
of the other materials, a unique inverse for the three diagnonal components of
the strain or stress tensor can be performed. For the case of a gage embedded
in a material, the boundary conditions between the gage and the surrounding
material determine the deformation response of gage. For a gage bonded to the
surrounding material, and ignoring shear in the thin gages, the gage would
sense the stress component normal to the plane of the gage and the strain
components tangent to the plane of the gage. This requires a mixed analysis
of components in the stress and strain tensors to infer the resistivity
response of a gage. The strain, stress, and mixed stress-strain conditions
are discussed in greater detail in Section III. This discussion provides a
possible resolution to some of the problems of infering stress response from

resistivity measurements.

I1I. Deformation Dependent Resistivity Response Model

The electrical resistivity of a material is a measure related to the
number and velocity of electrons flowing through the material's atomic
arrangement. With respect to a deformation dependence, some sensitive
intrinsic mechanisms of resistivity are the electronic band configurations of



the atomic arrangement, the electron-phonon interaction cross sections, and
the density of defect structures in the atomic arrangements [3-8]. The type
of electronic band configuration determines primarily the available number of
mobile electrons. The electron-phonon interaction and the density of defect
structures determine primarily the number and degree of scattering events that
impede the transport of electrons, and thereby, change the velocity of the
mobile electrons.

A starting point for a physical model of deformation-dependent
resistivity of a material is the definition of electric current, which is an

electron flux, namely,

J. = | eN*V.dy (2-1)
i v i

where Ji is the electric current vector, e is the charge per electron, N* is

a functional and represents the probabilistic number density of electrons
distributed over the velocity vector V of the electrons, and {V} is the
domain of possible electron velocities. In order to correctly represent the
physical recoverable and nonrecoverable deformation dependence of resistivity,
the electron flux vector J will be first defined per an individual atom of the
material. Thus, the electron density is also defined in terms of the number
of electrons per atom. This is initially cumbersome; however, the usual
electron flux measure of charge per unit area per unit time for a
non-deforming resistor can be easily obtained by using the atomic number
density per unit volume of the material. The time-dependence of the atomic
number density during a deformation process is described by a conservation
principle that is analogous to the conservation of mass. This particular
definition for current is used to provide a clear physical representation of
the recoverable and nonrecoverable deformation dependence. Thus, during a
recoverable deformation, which is like an elastic deformation of continuum
mechanics, the atomic arrangement of the material is described by a continuous
function. Hence, the number of atoms in a lattice plane remains constant as
the lattice plane undergoes the deformation process. However, during a
nonrecoverable deformation process that involves dislocations, the number of
atoms in a lattice plane need not remain constant. This merely means that a
thin foil of a material being stretched uniaxially can have a permanent change
in thickness from dislocations gliding across lattice planes. The amount of



this nonrecoverable thickness change depends on the species of the dislocation,
but essentially the cross-sectional area of the foil is locally reduced by an
atom spacing per dislocation glide. In terms of the previous definition for
elastic current per atom, an integration for the total current of the reduced
cross section would sum over fewer atoms after the dislocation glide. Hence,
the nonrecoverable deformation dependence of resistance response requires that
special attention be given to the initial definition of electric current.
Certainly, the later development of the nonrecoverable deformation dependence
will be more direct and easier to understand because of this definition.

At this point, a deformation-dependent resistivity model has to be
discussed in terms of the deformation process, and how the kinematics of the
deformation process change the terms in the integrand of equation (2-1). The
first term is the charge per electron, which is not changed by the limited
deformations considered here. The next term is the number density of
electrons. From various discussions of electronic band theory [3-8],
particularly for the transition metals that have unfilled intermediate
electronic shells and overlapping conduction bands, the relative deformation
between adjacent atoms can cause a change in the available density of mobile
electrons. Thus, the number density N* should depend on some deformation
measure involving changes in the relative interatomic spacing. Furthermore,
the density of defect structures [6-11], which for purposes here is described
in terms of dislocation density, can have an influence over the associated
number of mobile electrons per atom. This is because the core of a
dislocation disrupts the regular atomic spacing of a crystalline lattice
structure; hence, the electronic band configuration in the neighborhood of a
dislocation core may be perturbed and cause a local density change in the
available number of mobile electrons.

Finally, the last term of the integrand is the velocity of the electron
density functional; in terms of a statistical mechanics formulation [6,7]
for electron transport this velocity is more like a coordinate parameter
rather than a function. However, for current to flow, the electron velocity
is related to the applied force of the electric field. The electron velocity
relationship to the electric field can be developed either by a statistical
formulation that would use a Boltzmann's equation or by evaluating the average
electron velocity for the given electron density function by formally



integrating over the domain {V}. From a formal integration of equation
(2-1) over {V}, an average electron velocity expression is defined by

J=NV (2-2)

where the average velocity 2 of all the electrons is defined by the integration
process and the functional N for electron charge density no longer depends on
the velocity parameter, but only on deformation measures and the defect
density. The average velocity of electron flow is related to the applied

electric field vector [3-5], which can be represented as

V; = €5 Ej (2-3)
where E. is the applied electric field vector and cij is a second order
tensor to relate the electric field to the average electron velocity. Thus,
cij is an electron transport conductive tensor. The tensor cij is alsa a
functional quantity that depends on the deformation, and possibly the electric
field if nonlinear electrical effects are to be modelled. Some deformation
dependence in the tensor ci is expected because changes in the interatomic
spacing can cause the electron-phonon scattering cross sections to change.
Also, deformation processes that change the dislocation density function
change the number of lattice defect sites that scatter and impede the velocity
of the electrons.

In order to represent deformation-dependent expressions for the two
functionals of electron density N and the electron transport conductive tensor
cij' some background into relative deformations between atoms must be pre-
sented. The following review considers both recoverable and nonrecoverable
deformations; and the nonrecoverable part will be dependent only on dislocation
kinetics [38-40]. The relative deformation between any two atoms, say atom A
and atom B, can be separated into a recoverable term and a nonrecoverable term.
The recoverable term represents the continuum deformation of the atomic
lattice; hence, it can be represented by a continuous function. The nonre-
coverable terms represent primarily the discontinuum deformation as neighboring
atoms are repositioned by an amount equal to the Burgers' vector of disloca-
tions that move between the atomic lattice planes. This nonrecoverable term
is also a functional that represents the accepted physical mechanism of dis-
continuous motion and displacement between atoms from dislocations transported



through the atomic lattice of a material. In equation form, the relative

deformation is given as

x}(AB,t) = X|(AB) + u|(AB,t) + u)(AB,t) (2-4)
where

x} vector from atom A to atom B at time 1 = t,

Xi vector from atom A to atom B at time * = 0,

ul recoverable lattice displacement of atom B relative to atom A

at time v = t,
u] nonrecoverable displacement of atom B relative to atom A,

during the time interval [0,t] due to dislocation kinetics.

In words, equation (2-4) is a statement that the relative deformation vector
x} between two atoms A and B at time t = t is given by the initial value

X| plus a recoverable displacement u} plus a nonrecoverable displacement

u)]. This is illustrated in Figure 2-1, which shows an undeformed lattice
structure at time v = 0 and a deformed lattice structure at time t = t.

Note from the figure that the initial left to right number of lattice spacings
between atoms B and A is one; however, at v = t the number of left to right
lattice spacings between atoms B and A has increased to five. Thus, not only
have the lattice planes been deformed, which is the recoverable deformation,
but also dislocations have glided between atoms B and A to discontinuously
displace some of the lattice planes relative to each other.

As mentioned previously, and discussed elsewhere [39,40], the mathematical
representation of the recoverable displacement is that of continuous functions
to describe the shape of the lattice structure. The mathematical representation
for the nonrecoverable part is a functional that depends on the dislocation
density function. The dislocation density of this discontinuum formulation is a
statistical measure for the probable number of dislocations per species per unit
volume. For crystalline solids a particular species of dislocations is identi-
fied by a Burgers' vector b, a vector E that is tangent to the line of the
dislocation, and a velocity vector v that is the velocity of the dislocation
relative to the local lattice structure. This dislocation density function is
denoted by D(x,t,b,E,v)dbdEdv, which is the probable number of dislocation



species (b,E,v) in a species volume dbdEdv per unit spatial volume about
point x at time t. For shorthand notational purposes, a dislocation species
(b,E,v) will be denoted by g, and the domain of all species will be denoted
by Q. Using this density function, the nonrecoverable displacement of atom B
relative to atom A can be represented with two terms such that one term
depends on dislocation motion and the other term depends on dislocation
density changes. The expression is given by

t x(8,t) ;
u; J(AB,t) =] | (b;e. ot voD(X,t,9)
i o x(A,7) Q i"jkek L (2-5)

+ biejk’.Ekb'.*(aTD('x"t'g) + am(\-lmD(g,t,g)))dgdxj(A-’B,t)dt

From dislocation theory, the first term biejk!Ek"! of the above
integrand is the relative displacement of an atom on one lattice plane with
respect to an atom on an adjacent lattice plane as a single dislocation moves
between the two lattice planes and sweeps out an area rate that is given by
the vector cross-product of the line tangent Ek and the velocity Vg ejklEk“!‘
By multiplying the first term by the dislocation density D(x,t,q), and first
integrating over all species g in Q, next integrating over every lattice plane
between atom A and B, and finally, integrating over the time interval (0,t), the
net discontinuity ui] from dislocation motion is determined. This discontinuous
displacement is usually dislocation glide motion, but can also include dislo-
cation climb. 1In dislocation theory, pure glide motion does not result in a
local volume change. However, dislocation climb or dislocations that intersect
and cut through the lines of other dislocations can result in a local volume
change because these processes are inter-related with vacancy and interstitial
lattice kinetics. The second term of the integrand represents the relative
displacement between atoms A and B due to dislocation density changes along
the line of integration dx.(A2B,t). The measure of the displacement is from
the term biejklgkb!*; where the vector b!* accounts for the magnitude
and direction of the relative displacement when a change in the dislocation
density occurs. For example, if an edge dislocation were created between two
adjacent atoms, then this dislocation density change results in a relative
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displacement given by the Burgers' vector bi' Again, one performs the inte-
gration for the contribution to displacement from dislocation density changes
over all dislocation species g in species space Q, then an integration over
each lattice plane between the positions of atoms A and B at time 1 along

the line segments dxj(A%B,t), and finally an integration over all times

T in the interval (0,t).

Equation (2-4) represents the relative deformation between two arbitrary
atoms A and B. From the previous discussion of electronic bond configurations,
it is the relative deformation between atoms that would be a physically
appropriate deformation measure to express changes in the electronic band con-
figurations. Furthermore, the relative deformation between atoms would be
appropriate to represent changes in the electron-phonon interaction cross sec-
tions. In both of these cases, one can visualize the relative motion of
neighboring atoms changing both the electronic energy levels, as the electronic
bands overlap, and the phonon spectrum along with the associated interaction
cross sections, as the atoms move closer or farther apart. It is not, however,
as easy to visualize all the physical effects from dislocation kinetics and to
see how the physical effects should be best represented.

There are, however, some resistivity changes that depend on reasonably
well understood dislocation kinetics. The two physical effects that readily
suggest dislocation dependent deformation measures are the defect cross
section for electron-dislocation scattering [6-10] and the cross-sectional
area and length changes of the material body as a result of nonrecoverable
deformation from dislocation glide. A direct dislocation density dependence
for electron scattering has been modelled by Brown [9,10], and the scattering
depends on the cross-section of the dislocation core. The cross-sectional
area and length change of the material can be calculated for rectangular shape
foils commonly used in piezoresistance stress gages for cases of homogeneous
or spatial uniform dislocation kinetics.

The physical effects from dislocation kinetics that are not well
understood involve the electronic band configurations. For example, the
physical effect or relationship between dislocation density and the electronic
band configurations, and any subsequent interatomic deformations, is not
presently well-known. However, it is reasonable to assume that such an effect
exists because the core volume around a dislocation line separates neighboring
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atoms and disrupts the normal electronic band configuration of the regular
crystalline lattice structure. Furthermore, the core volume of a dislocation
line results in a localized strain field in the crystalline lattice structure
near the dislocation. Based on this discussion, the core volume of the
dislocation density would be a deformation measure to use as a function
dependence in both electronic band configuration and localized strain field
effects during dislocation kinetics. In fact, a measure of dislocation core
volume per unit volume would be somewhat like a volume strain measure. Such a
measure can be readily defined in terms of the dislocation species parameters
and the dislocation density function. For example, the core volume for a
particular dislocation species is simply the inner vector product of the
cross-sectional area vector of the core, which depends on the particular
species (b,E,v), and the tangent vector § of the dislocation.

The above discussion provides sufficient physical background to represent
resistivity response in terms of deformation dependent measures. First,
consider the electron density functional N of equation (2-2); clearly, N would
certainly depend on a deformation measure that describes the changes in atomic
separation and on a deformation measure that describes lattice changes from
dislocation kinetics. Changes in atomic separation are measured by the
relative deformation x} of equation (2-4), however, for a simple model of
electron density changes that involves only nearest atomic neighbors
surrounding an arbitrary atom and small deformations, a dependence on x} can
be approximated by a dependence on the local recoverable strain tensor and an
approximation for the nonrecoverable strain tensor. This approximation
follows from equations (2-4) and (2-5) by letting atom B approach a nearest
neighbor position of atom A and using a small deformation approximation to
replace the integration limits x(A,t) and x(B,t) with x(A,0) and x(B,0) in
equation (2-5). This gives a continuum result for the recoverable lattice
strain tensor and a discontinuum approximate result for the nonrecoverable
strain tensor due to dislocation kinetics. These two strain tensors define a
total strain tensor in the neighborhood of atom A to atom B given by

s =18+ 08 (2-6)
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where 1}2 is the total strain tensor and the recoverable lattice tensor 1! is
1l = Ain' = 1/2(Ajui| + Aiujl + AjukIAiukl). (2-7)

and the nonrecoverable strain tensor Y] is approximated for small deformations
by

1] = in] = 1/2 (Ajui] + Aiuj] + Ajuk] Aiuk]
(2-8)

+ Ajukl Aiuk] + Ajuk] Aiukl)

which couples the recoverable and nonrecoverable displacements. In the above
expressions, the A() operator is used to denote a partial derivative relative
to the atomic lattice spacing size, and replaces the usual point-wise partial
derivative notation of continuous function theory. For the lattice strain
tensor 1!, the A() operator is retained even though the lattice displacement uj
is assumed to be a continuous function. The A() operator on the dislocation
dependent relative displacement is approximated by

j k] = I I (b, ejkIEk !D + bleJk!Ekb; D) dgdr (2-9)
which is an expression very similar to equation (2-5) except that the spatial
integration has been removed by using the small deformation approximation, and
the rate of dislocation density change is defined by

D(x,7,9) 23D+ 3, (V,0) (2-10)

Additional dislocation dependent operators é and A are defined for purposes of

shorter notation as

o = A0 = I D38 3abicn O % (2-11a)

8O = AgjO = 1 by Bly*O da (2-11b)
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With the above definitions of operators, equation (2-9) becomes

ot " -
Ajui] = ; Aijo + AijD dr (2-12a)

or equivalently in vector notation

tiD+ADdr (2-12b)

11>

Au] =1
0

Using the above strain measures, a functional involving the total
relative deformation can be expanded, for small deformations, in terms of the
recoverable and nonrecoverable strain tensors; providing that the intrinsic
lattice rotation effects are not important. Thus, for any smooth functional f
with respect to the argument x}, an approximate expansion up to first order
terms in local relative displacements and then strains is

FOXI) + By, FOXD) ul + &,,FCXI) u] (2-13a)

f(x})

FCXD) + A, FCXD) 1l + A, ,F(XDY] (2-13b)

where Aulf’ Au]f' ngf, and QY]f are functional operators of the functional f
for variations in the recoverable lattice displacement u|, the nonrecoverable
displacement u], the recoverable lattice strain tensor ll' and the nonrecover-
able strain tensor y], respectively; and f(X|) is the value of the functional f
at zero displacemenEs and/or strains. It is this type of representation that
will be used to express a relative deformation dependence for the electron

density functional N. But first, an explicit measure of deformation related

to dislocation core volume is required to complete the functional

representation of N on dislocation density.
As discussed earlier, a measure of dislocation core volume is the cross

sectional area of a dislocation core times the length of the associated
dislocation. Here, it will be assumed that the cross-sectional area of a
dislocation core can be described in terms of the species attributes {b,f,v}.
Then, denoting this area as vector ¢ whose direction is tangent to the
dislocation line, the volume of a dislocation segment of length E is
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a* = ¢kEk= [ I i (2-14)

To find the volume due to a given density of dislocation Do' consider ao® as an

operator per unit specles; then the dislocation volume measure per unit volume

is given by

@, = é ¢kEk Do dg (2-15)
For notational purpose, an operator ADa over all species and times up to

t is defined as

t
ADu() = g é ¢kEk() dq dr (2-16)

This operator is defined to relate electron delLsity changes to dislocation
kinetics because it is the change in dislocation density that is relevant.
Thus, at any time t greater than 0 after a given initial density Do' the
dislocation volume per unit volume denoted by a(x,t) is

a(x,t) = a (x) + Aja D(x,7,9) (2-17)

where @, is defined in equation (2-15) and the ADa operator of
equation (2-16) includes integrations over time and species to represent the
change in dislocation core volume from dislocation kinetics.

Using the strain tensors and the dislocation core volume as arguments of
the electron density functional N, a first order expansion about zero strain
and an initial a, core volume is analogous to equation (2-13), namely,

N(!!t;XI II],‘!) = No(.&.tiﬂo)
(2-18)

+ ngNll + QY]N Y] + AaNADnD

A
where ngN, 4,

1" 1] and a; but in a simple model would be given by two second order tensors
and a scalar, respectively. The representation for electron density per atom

]N, and AGN can be, in general, dependent on the arguments
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given in equation (2-18) provides for the initial electron density No’ plus a

change from recoverable strains given by gle Y!, plus a change from non-
recoverable strains given by Qy]NI]' and finally a change from core volume of

new dislocatipns given by AGNADaﬁ. For material samples that are comprised
primarily of one element, almost all atomic neighborhoods remain the same
atom species before and after the nonrecoverable interatomic displacements.
Thus, the coefficient A ]N would probably be small and nonrecoverable strain
effects that depend on the functional N defined per atom would be insignificant
in this case. This intrinsic or local effect of nonrecoverable strain on
resistivity change is clearly separate and distinct from a global effect of
nonrecoverable strains that results from permanent dimensional changes of the
material specimen. The permanent dimensional changes will be modelled after
the intrinsic representation for the electron transport conductive tensor cij
of equation (2-3) is completed.

The functional ci. depends on interatomic relative deformations and
dislocation density, which influence the electron-phonon and electron-defect
scattering cross sections. Thus, analogous to equation (2-18), the
deformation measures to represent those physical effects will be taken as the
strain tensors and the dislocation core volume. Then, a first order expansion

about zero strain and the initial a, core volume is given for the tensor

functional c by

(2-19)

where g c, Q c, and Aag can be, in general, dependent on the arguments

Yl, Y], and a; but in a simple model would be given by two fourth order

Eensars and a second order tensor operator, respectively. The representation for
electron transport impedance given by equation (2-19) provides for an initial
impedance to electron mobility given by the tensor C, plus a change from
recoverable strains given by gvlg I" plus a change from nonrecoverable strains
given by Q ]g 1], and finally a change from core volume of new dislocation

given by Aa c ADa D. The effect of nonrecoverable strains on electron
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transport conductance are expected to be small for a material sample comprised
primarily of atoms from one element; thus, the coefficient gY c is also
expected to be small in this case.

This completes the representations for the two independent terms in the
integrand of equation (2-2). The two representations of equations (2-18) and
(2-19) are now substituted into equation (2-2) to give the following
expression;

1!

N!I + g'r]N!] M A¢:NAD"D)(20 + Qﬂg P

1= Ny + &y
(2-20)

+ éy]g 1l + Aa g ADGD) E

The terms of equations (2-20) can be multipled together to give the following
expression for intrinsic current per atom;
R TRIRE GRS

* Eypyp XX+ By XD 4 By XY (2-21)

tLyp U0+ Ep D+ D)E
where the operator coefficients in equation (2-21) are defined by the multipli-

cations in equation (2-20) as

I, = Ng (2-220)
£Y| =N leg + goéle (2-22b)
By = Nobyi€ * Loy (2-22c)
I = (Noﬁag + EoAaN) ADu (2-22d)
Lyiyl = 8N &y 8 (2-22e)
Byl = &V Ang + &N Ay (2-226)

= A NA_,C (2-22g)

5ivl T 3]
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ETID = (QYIN Aag + AGN ngg) ADa (2-22h)
IY]D = (QY]N Acg + AaN QY]g) ADu (2-22i)
Inp = AaN ADa Aag ADa (2-22j)

Equation (2-21) is a consistent approximate model if the higher order
terms omitted in the first order expansions given by equations (2-18) and
(2-19) are small relative to the cross-product terms and squared terms defined
in equations (2-22). Even though the development of terms in equation (2-21)
was based on physical concepts of electron transport and scattering terms,
experimental data are required to test the adequacy of terms in equation (2-21)
to represent well intrinsic resistivity response. Such data are not available
since the measurement of intrinsic resistivity per atom is not experimentally
performed. What is measured is the voltage response across a material
specimen subjected to a prescribed stress and/or deformation history and
usually under the condition of a fixed total current through the specimen
[17,23]. The condition of fixed total current causes the local electric field
in the test specimen to change as the resistivity changes during the
prescribed stress and/or deformation history. This change of the electric
field, when integrated in the direction of current fiow, is the voltage across
the test specimen. This voltage is measured to then infer the total
resistance change for the test specimen.

In order to separate the various contributions to the total resistance
change of a test specimen, equation (2-21), which is current per atom, must be
integrated over the atom density of the test specimen that exists in the
current state of deformation. In general, such an integration is not possible
except for the simplest cases of a deformation history. Fortunately, the
geometrical shapes of the material test specimens used to determine
resistivity are selected to be uniform in a length direction and with a cross
sectional area that is either a circular wire or else a rectangular shaped
thin foil. During the experiment, the deformation response within the test
specimens is taken to be spatially uniform throughout the material test
specimen in either the stress or strain tensors. Of course, the time history
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of the stress and strain are interdependent. However, as demonstrated by the
experiments of Ginsberg et al. [17] and Chen, et al. [23], a knowledge of the
current stress state is not sufficient to determine the current strain state
because of the nonrecoverable contributions to the strain and deformation from
dislocations. Nonetheless, the explicit assumption of a spatial uniform
strain state in the material test specimen is almost required to perform a
spatial integration of equation (2-21) that results in a reasonably simple and
useful expression for total resistivity. For purposes here, this is placed as
a restriction and is stated explicitly:

A2.1 In order to integrate the electron current equation (2-21) to define
total resistivity response of a material specimen during a prescribed
deformation history, the material specimen is assumed to be a thin foil
and the prescribed deformation history is restricted such that only
spatially uniform strain and dislocation density histories occur in the

material specimen.

The assumption A2.1 corresponds to the desired experimental test
conditions under which resistivity should be measured. In the case of stress
gage designs that sense a resistivity change, it would also be a reasonable
design constraint to require that the gage be configured in shape and geometry
to have spatially uniform states of strain. This design constraint, if
possible to implement, would simplify the interpretation of the resistivity
measurement and improve the quality of the inference as to the strain or
stress history that surrounds and loads the gage. However, if the strain and
dislocation kinetics are not spatially uniform, the volume integration is very
difficult.

To facilitate shorter notation during the integration, the coefficients
of the electric field vector in equation (2-21) will be combined and written
as a single strain and dislocation dependent tensor I. Then equation (2-21)

becomes
(2-23)

Now, equation (2-23) can be multiplied by atom density per unit volume, and for
a long, thin foil of rectangular cross section, be integrated over the deformed
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configuration. The integration of equation (2-23) over the deformed configu-
ration of the material test specimen is given by

] I 15 @ -r, ) a(x,t) dx,dx,dx, = 0 (2-24)
X3} x,1 x;1 K kj™J 17273

where the atomic number density a(x,t) is at the time t of the deformation
history, the tensor Ty is evaluated at the history dependent values of

strain and dislocation density at time t, and the volume domain of integration
for the foil test specimen is along the deformed length xl} in the X,
coordinate direction, the deformed width x2} in the x2 coordinate direction,
and the deformed thickness x3} in the X3 coordinate direction. For this
experimental geometry, only the integrated E1 and J1 components of electric
field and electron current along the x1 length coordinate of the foil are
recorded during a resistivity measurement. Furthermore, the test specimen is
taken as materially homogeneous and the deformation history of strain and
dislocation density has been assumed spatially uniform. Therefore, the order of
the integrations over xl, X, and Xy coordinates can be freely interchanged

and the tensor r would not depend on the spatial coordinate x in the test
specimen, but oaly on time t. Using the above, and the experimental condition
that the total current flowing through the test specimen is a constant value
throughout the history of the deformation, the current integration can be

written as
I1 a
{1} £2} i}} J, a dxgdx,dx; = i;T_i;T X1} 2o} x4} .25
_ I1 a*
RIIRSY

where Il is the constant electron current maintained in the deformed cross-
sectional area x2}x3} during the experiment and a* is the total number of atoms
in the material test specimen because the uniform deformation history requires
that the number of atoms be given by atomic density multiplied by the volume

a* = a xll x2} X3} (2-26)
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The other term to be integrated in equation (2-24) is the (1-1) component
of the electron impedance tensor and the electric field multiplied by the
atomic density. This integration gives

Y B | r,,E.,a dx.dxdx, =r,,aJ [ | E,dx,dx,dx
xl} le x3} 1171 37721 11 x}} 12} xl} 1771772773

r),a 61 12}13} (2-27)

¥

xl}

where Ty and a are independent of the spatial coordinate x and the integrated
electric field across the test specimen becomes the electric potential, 91, or
voltage change, across the test specimen, which can be rewritten in terms of the
total number of atoms and an averaged electric field quantity illxl}.

Combining equations (2-25) and (2-27),

r;,8,8"x} = Ila*lxz}x3} (2-28)

from which the resistance coefficient R11 can be defined from the ratio of

voltage and total current, !1111, as
R11 = xl}l(rllxz}x3}) (2-29)

For small changes of resistivity due to the deformation history, the previous
expression for r11 can be expanded in an inverse series to give an approximation

for R11 in the deformed configuration as

R.. = fllRo
11 x2}x3}

(1 + BYI 1' + 57] I] + RDD

11! Y] (2-30)
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where from the expansion and equations (2-22) the terms are

R0 = llrll = 1/N0c011 (2-31a)
BY' = (- N0 QYI 11 ~ Sl ng N)/Ro (2-31b)
BY] = (- No QY] Cyy - c011 QY]N)/Ro (2-31c)
R0 = (- (NOAGC11 + Co11 Aa N) ADu)/R0 (2-31d)
Byivi =~ Myt ’Ro (2-31e)
Byivi = © "% - S Mo R (231
By =~ &Mvtu/Ro (2-319)
BTID = - (gleAacll + A NA c 1) A a/R (2-31h)
BY]D = - (QY]NAac11 + A NAY] 11)ADa/R0 (2-311)
RDD = - A NA oC11 DaADa/R (2-31))

The definitions given in equations (2-31) are the intrinsic resistance effects
on electron density and transport from deformations. The coefficient term in
equation (2-30) identifies the geometry-dependent resistance effects from
deformations. This deformation-dependent coefficient can be rewritten for the
case of spatially uniform strains and edge dislocation kinetics by using the
following approximate relationships for the deformed length, width, and thick-
ness dimensions of the test specimen in terms of the initial length Xll,

width x2|, and thickness X3|;

xl} = Xll + ull + ull
(2-32a)

o

= Xll (1+ Ylll + ] AllD + AllD dt)
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x2} = le + u2| + u2]
(2-32b)

t .
= Xyl (L + Yol + é 522 D + A, D dr)

x3} = X3I + u3| + u3]
(2-32c)

t .
= X3l (1 + vg5l + g A33 D + Ayy O dv)

Using the results from equations (3-32), the deformation dependent coefficient

can be approximated by

xl} : Xll
xz}x3} x2|x3|

t .
(@ + v+ g Allo + 4,0 d0) - Ypo!
(2-33)

t . t .
- g Azzn + A0 d)(L - Yy51 - g A,,o + A,,ﬁ dx)

Equation (2-33) can be further reduced by retaining only the first order terms
and their associated cross-product terms to give a pure geometrical dependence
of the deformations on a foil's resistivity;

xll ) xll
lex3} X2lX3I

(1 + Ylll = Yzzl = Y}}I

+

t .
[y =Ry - A D+ Ay - Ay - A55) D e

dt (2-34)

Cih e

O =

Yl T (Byy + A55) D + (A, + Ayy)

t
22! g (A - A3 D+ (A} - Ayy)

= |

dt

t [ ]
Y33l g Ay - Ay D+ (A - Ayy) Boor
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This geometrical dependence can be substituted in equation (2-30); then
retaining only first order terms and the first order cross-product terms, the
expression for the (1-1) component of resistivity becomes

< R @ ! Bygrd By
* BYIE' ¥ 5711] + ROﬁ + (BYlD + EYIRD) llﬁ (2-35)

* Bygp * Sppfp) 110+ Gy Ryy + GyRy) + Bypyp) XIXD

where the tensors QYI' EY] and gYIY] are easily defined from the geometrical
dependence given in equation (2-34) and squared strain terms 1[;] and ;]1]

were omitted since only the cross-product terms were to be retained. The cross-
product terms involving recoverable and nonrecoverable strains, I'I]' can be
neglected in comparison to the other terms for most deformation histories
because usually neither of these strains are large. The other term which will
be neglected involves the product 1]5, primarily because this is a squared term
in dislocation density effects. After removing these terms, the resistivity

expression (2-35) reduces to

X, IR
R.. = l o

11 = XyikaT (B * Gyt * Gyl + Byxl + Byju

(2-36)
+ Ry D+ (BTID + ETIRD)IIE)

and contains a deformation dependence on the recoverable strain tensor xl,

the nonrecoverable strain tensor 1], and dislocation density kinetics D.

The resistivity expression (2-36) has geometrical coefficients ng and

G ] to account for the recoverable and nonrecoverable dimensional changes of
a resistor that change the total resistance. The intrinsic resistivity of the
material has coefficients BYI’ BT]' and RD to account for linear interatomic
dimensional effects from recoverable and dislocation dependent deformations.
Finally, two cross-coupling effects from the coefficients BYID and ETIRD are
retained and describe a coupling between the recoverable strain and the dislo-

cation kinetics.
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The expression (2-36) for resistivity dependence on deformations is more
general than previous elastic stress model given by Bridgeman [12] and the
elastic stress plus plastic strain model developed by Chen, Gupta, and Miles
[23] because of the explicit dependence on dislocation density and the
cross-coupling terms. The explicit dependence of resistivity on dislocation
density is more physically representative of mechanisms that cause changes in
resistance; however, during an experiment the dislocation density is not an
easily measured function throughout a deformation history. Nonetheless, terms
involving the dislocation density could be evaluated with high voltage
electron microscopy from experimental data for an improved representation of
the elastic-plastic resistivity response.

I1I. Inference of Stress From Resistivity Changes

The resistivity expression (2-36) of the previous section depends on
strain and dislocation density changes. The strain and dislocation density
are appropriate physical variables that relate resistivity to atomic and
scattering mechanisms of electron flux. If the recoverable strain tensor
measure is elastic, then it can be uniquely replaced with a stress tensor
dependence by using the elastic stress-strain relationship. However, if the
nonlinear terms are retained in the approximate nonrecoverable strain tensor
of equation (2-8), then resistivity would still depend on the recoverable
strain tensor in a coupled and complex way. For small recoverable strain
applications, these cross terms in the "plastic" strain could be neglected,
and the classical assumptioﬁ of plasticity that "elastic" and "plastic"
strains are additive would result. This does not, however, imply that this
resistivity model is based on the concepts of continuum mechanics because the
representation of the nonrecoverable deformation and strains remains as a
functional that depends on the dislocation density. Furthermore, the
dislocation density is'the source of the rate dependence in the resistivity
response even though the recoverable strains are elastic. Thus, it is clear
that the general resistivity model of equation (2-36) is complex and difficult
to uncouple so that available experimental data on resistivity could be
correlated with it. This model can be greatly simplified by the following

assumptions:
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A3.1 Assume that the recoverable strains are elastic.

A3.2 Assume that the nonlinear, or second order terms in thé recoverable and
nonrecoverable strains are small relative to the first order terms.

A3.3 Assume that the resistivity response depends only on the strains in the
length, width, and thickness directions.

AR3.4 Assume that the resistivity response of the material is isotropic.
A3.5 Assume that the elasticity response of the material is isotropic.

Based on the above assumptions, the second order tensors Il and I] have
only a resistivity dependence from the three nonzero diagonal components 11,
22, and 33 when given in a coordinate frame with axes oriented such that Xy
is along the length direction, X, is along the width direction, and Xy is
along the thickness direction. Thus, the fourth order elastic-resistivity
tensors of equation (2-36) do not depend on shear components and can be
reduced to three-by-three matrices with components defined by diagonal and
off-diagonal parameters as follows

[ Ryl R RI]

R, = | Ryl Ryl Ryl (3-1a)
| Ryl Ryl Ryl |
[ Ry RJ R

Ry = | Ryl Ryl R (3-1b)
| Ry] Ryl Ryl
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[ nx)] R%] R*) ]
Rd, ROI ROI

Ra! Rgl Rgl (3-1c)

el
<
o

*
] ROI R;I R;I j
The geometrical tensors ETI and EY] can also be now written as three-by-three
matrices, which from equation (2-34) are seen to be equal to each other and

given by

1 0 0
.G‘” = 'G'Y] = 0o -1 0 (3-2)
1] o -1

[ Ry 0 O
&Ry = 6 R, O (3-3)
0 0 -R
L D ]

From equations (3-1) through (3-3), it is seen that this isotropic,
elastic-plastic, shear-independent resistivity model has four scalar
parameters and three functional operators to describe the intrinsic strain
dependent resistance response of a material; namely, Rdl, Rol' Rd],

Ro]’ R*dl, and R*ol; and a functional operator RD. Here, the

intrinsic resistivity response that depends on the recoverable strain, through
parameters Rdl and Ro' of tensor RYI is defined as the "idealized"
resistivity response of a material. For this intrinsic model, idealized
resistivity is independent of the geometrical dimensional effects and of the
dislocation density effects that change the resistance of a material test
specimen.

Finally, using equations (3-1) through (3-3), equation (2-36) for the

R11 component is written as
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R X. |

_ Ry
+ Ryl 1+ Ryl (Yool + ¥331) + Rylyy 1 + RyI(Yo5) + Y551) (3-8)

+ RyB + (RYI + Rp) v);1 + (REL - R (Yppl + Y551) D)

The resistivity expression (3-4) for the R11 component of an isotropic, thin
rectangular foil can account for recoverable (elastic) and nonrecoverable
(plastic) strain effects, dislocation density change effects, and cross-
coupling between recoverable strains and dislocation density changes. It is
only the R11 component from a tensor relationship for resistivity effects.
The nonrecoverable (plastic) strain measures depend on dislocation transport
and dislocation density changes that are described by first order terms in
equations (2-8) and the approximation of equation (2-9).:

The resistivity expression (3-4) extends the previous elastic-plastic
resistivity model developed by Chen, Gupta, and Miles [23] because of the
tensor aspects for nonrecoverable strain effects, the explicit rate dependence
on dislocation density, and the cross-coupling term. The explicit rate
dependence on dislocation density and the cross-coupling term are important in
cases where nonrecoverable deformations have occurred. Such cases can arise
when residual stress is to be inferred from the measured resistance change of
a gage. Finally, the experimental data obtained by Chen, Gupta, and Miles [23]
can be used to evaluate parameters of this extended model. This would include
an evaluation of cross-coupling terms R;I, R;I and RD to represent changes in
the resistivity-strain slope that occurs for ytterbium and manganin materials
during unloading from a plastic straining state. In Figures 3-1 and 3-2
experimental data from Chen, Gupta, and Miles [23] are shown of the resistance
response versus a uniaxial elastic-plastic-unloadipg-reloading strain history
for ytterbium and manganin. Without the cross-coupling terms in the model of
equation (3-4), the elastic loading and unloading resistivity-strain slopes
would be the same value. This extension of resistivity response could lead to
improved gage designs that can respond to both elastic and plastic deformation
histories, and still have an interpretable stress output.
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Presently, the gage designs for deformation histories and subsequent
inference of stress, particularly for ytterbium, are restricted to elastic
responses. In the following discussion for just elastic response, this means

that the terms of expression (3-4) involving 711]. 722]. 733], and D can be
omitted as no dislocation density effects would occur during purely elastic
material response. Then, equation (3-4) reduces to
RoX1!
R = %G1 4+ gl = Yol = Y550
(3-5)

+ Ryl Yy 1+ Ryl (rgnl + 7551))

where the elastic-resistivity coefficients are Rdl and Ro" From
assumption A3.5 the material is taken as isotropic and elastic, so equation

(3-5) can be written in terms of stress as
Roxll
IX

R -

1 =X (1 + (1 + 2v) 031 = 992 - 633)/E

I
2'73 (3-6)

# (L + WIRyl = RD) 07, /E + ((L = v) R| = Wyl)(0); + 0, + 055)/E

where the isotropic elasticity relationships for the diagonal strain
components are

Ylll = ((1 + v) Oy =V (o'l1 + 0y, + 033))IE
1221 = ((1 +v) Oyp =V (“11 + o, + 633))IE (3-7)
733| = ((1 + v) O35 =V (611 + 0,y + 633))/E

and where v and E are Poisson's ratio and Young's modulus, respectively. In
terms of the notation used by Chen, Gupta, and Miles [23], their piezoresis-
tance coefficients o« and B are related to the intrinsic strain-resistivity

coefficients, Rdl and Rol’ by

a = ((1 -v) Rul - del)/E (3-8a)

o
[

(1 +v) (Rdl - ROI)IZE (3-8b)
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Inverting equation (3-8), the elastic strain-resistivity coefficients in terms
of the piezoresistivity coefficients a and B are

Rdl (e + 28(1+v)/(1 + v)) E/(1 - 2v) (3-9a)

R.|I =(x+ 28v/(1 + v)) E/(1 - 2v) (3-9b)

0

Using the experimental data measured by Chen, Gupta, and Miles [23] for
ytterbium, :

v = 0.365
E = 120 kb (3-10)
a = - 0.788 x 10~2/kb

B =-1.71 x 10°2/kb

dimensionless values of Rdl and Ro' for ytterbium from equation (3-9) are

= - 10.57

Q
|

(3-11)
- 7.57

X
1l

From an inspection of equation (3-5) or (3-6) the elastic dependent
resistivity response of a foil is determined by knowing either the three
independent components of strain, (Ylll, 722|, 733') or the three independent
components of stress, (611, 622, 633). Thus, a foil gage that is "ideally"
embedded in a material would, by definition of ideally, sense the three inde-
pendent components of strain, or equivalently, the three independent components
of stress. For a constant current through the gage, the measured response from
the gage would be the voltage, which from equation (2-28) is directly propor-
tional to the resistance response of the foil. Clearly, a single resistivity
history measurement for R11 cannot be used to determine uniquely the asso-
ciated histories of three independent strain components or three independent
stress components. This is because the resistivity change could be caused by
a single component of strain or stress, or by a linear combination of the com-
ponents. Thus, without special gage design to isolate and/or separate the
effects of the different strain or stress components, or some special prior
knowledge about two of the three components, it is not possible to infer multi-
component strain or stress response from even an ideally embedded gage package.
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There are at least two alternative approaches. The first was mentioned
previously and consists of gage design such that single components of strain
and stress are isolated and separated and then sensed by the resistance
material; this is a standard current approach in piezoresistance gage develop-
ment [30-36]. A second approach is suggested from the above discussed inabi-
lity of a single gage to uniquely infer the multi-component state of strain or
stress. Because there are only three independent components of either strain
or stress that cause the resistivity response of most materials, it is concep-
tually possible to consider three "resistivity-independent™ materials and to
design a triple material gage package that provides three separate and simul-
taneous measurements of resistivity responses.

For purposes of illustration, consider three different materials labeled a,
b, and c; and with elastic intrinsic strain-resistivity coefficients denoted by

Ral, Ral; Rzl, Rgl; and Rgl, REI; respectively. An illustration of a parallel

configuration for a triple material gage package is shown in Figures 3-3.

For this configuration, using equation (3-5) and assuming that the three materials
are subjected to the same strain history, there are three separate and simul-
taneous resistivity responses from a triple material gage package given by

I
a 0 1
R11 (1 + (R ] +1) Yll'

X1 X1
(3-12a)
+ (R31 - 1Yl + Y3310)
b N3
RY. = ol Q1+ (R 1+ 1) Y., 1
11 I xb| 11
(3-12b)
b
+ (R - 1)(1pl + Y5510
RS, = —9——11— (1 + RE} + 1) v.41
11 7 i) x€ d Y11
20 X3
(3-12a)

+ (RE1 = vyl + Y551))
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For three materials that are "resistivity-independent™ means, by definition,

that the above three equations can be inverted to determine the strain
histories Ylll' 722|, and 733|. This is, of course, the strain history

inferred for the three gages; and must be related to the strain history of the
surroundings. In an "ideally strain embedded™ gage package, the two would be
identical. To illustrate the "ideally strain embedded" case for the three
materials, equations (3-12) can be inverted to obtain the strains in terms of

the three resistivity changes:

r_ n r “
! TRia  YR2a  TR3c
Y22l | = | YRza YR  YR3c
Y33IJ TRsa  YR3b TRBCJ

where the terms of the vector and matrix of equation (3-13) are given by

BR_ = (R]} - RS XJ1/X01 X3/ (RS XJ1/%51 X51)
aRy = (RD) - RE %11 xS/ 181 81
R = (RS, - RC XTINGI XS/ xT11G1 X51)
Yaia = (RQl+ 1) RSl + 1) - RS1 - DRDI - 1))/det
Yoop = (RG1+ 1) RG1+ 1) - RGl - 1RSI - 1))/det
Yase = (RGI+ 1) RYl + 1) - Rl - DRSI - 1))/det
Yaip = - (RG1 + DRI - 1) - RSl - 1)(RE] - 1))/det
Yare = - (RO + D@3 - 1) - Rl - DERD) - 1))/det
Yoza = - (RS + DY) - 1) - RP1 - (RE) - 1))/det

-

AR

AR

AR

b

Cc

.

(3-13)

(3-14)

(3-15)
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Yrae = = ((RGl + IJ(Rgl -1) - (Rgl - LR3I - 1))/det
TR3a = ~ ((Rgl + DRCL - 1) - (Rgl - 1)(RCI - 1))/det
Yrsp = - (Rgl + DRGI - 1) - (Rl - 1)(Rg| - 1))/det

and where the determinant det is given by

det = (R3l + 1) (Rl + 1) RSl + 1) ~ RO - 1) RS - 1))

RO+ 1) (R + 1 RS+ 1 - R31 - 1) ®S) - 1)) (3-16)

+

+ RS+ 1) (R + 1) ®O v 1) - R - 1) RO - 1)

The above analysis demonstrates the conceptual basis for a triple material
gage package from which the three diagonal components of strain can be com-
puted. The condition of "resistivity-independent"” materials is now placed in
the context that the determinant defined by equation (3-16) cannot be zero;
otherwise the inverse of equations (3-12) cannot be calculated. A non-zero
determinant is a physical requirement that restricts the possible choice of
materials for the gages; and it is of interest to check if any choice is
available.

The experimental data of Chen, Gupta, and Miles [23], mentioned
previously for ytterbium in equation (3-10), also reported values for manganin
and constantan. The values reported for manganin were [23)

v = 0.374
E = 876 kb ' (3-17)
o = -0.44 x 10™>/kb
B = -0.31 x 10 /kb
and the values reported for constantan were [23]
v = 0.33
E = 1461 kb (3-18)
e = -0.49 x 10”%/kb
B =1.66 x 10™"/kb
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Denoting the constantan as material "a", and using equation (3-9) and
values from equation (3-18), the strain-resistivity coefficients are

a, _
R4l = -51

(3-19)
a, _
Ryl = .14

Denoting manganin as material "b", and using equation (3-9) and values from
equation (3~17), the strain-resistivity coefficients are

Ryl = -2.51
(3-20)
by _
Ryl = -2.12

This leaves the ytterbium to denote as material "c", and from equation (3-11)
its strain-resistivity coefficlents are

R§| = -10.57
(3-21)
c = -
Ryl = -7.56

Using the values from equations (3-19) through (3-21), the determinant

expression (3-16) can be evaluated to give

- det = + 61.87 (3-22)
This shows that three "resistivity-independent™ materials, namely constantan,
manganin, and ytterbium, are available for a triple material gage.

The above analysis for a triple material gage demonstrates that three
resistivity measurements can provide a unique determination of three diagonal
components of strain. The three strain components are for an "ideally
embedded" gage, and therefore, would be the strains of the gage material. By
assuming an "ideally strain embedded" gage, we have assumed that these are the
strains of the surrounding material. In practical applications, there would
exist a mismatch of material properties between the surrounding material and
the gage materials; hence, "ideal strain embedding" would not be physically
possible, but may be a reasonable approximation for some applications.
However, in other practical applications, further analysis would be required
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because strain tensor continuity across a boundary interface between two
different materials is not always satisfied. The problem of stress and/or
strain continuity conditions has been discussed previously by Gupta [22). For
elastic response and perfect bonding, the condition of normal stress
continuity at a material interface is an equilibrium condition. The
tangential conditions on stress components at a material interface, however,
can be discontinuous. For perfect bonding of the materials at a planar
interface, the tangential strain components are continuous across the
interface boundary. Thus, the boundary interface between the resistivity
materials and the surrounding material must be represented in order to make an
inference of strain-stress response of the surrounding material. In this
case, a hybrid gage analysis involving both the stress and the strain
resistivity responses for the three materials of the gage is required for one
to infer the stress-strain response of the surrounding material.

For thin gages placed normal to the shock front, a hybrid stress-strain
coupling between the gage surfaces and the surrounding material is a
reasonable and practical approximation in that the time interval for stress
ring-up in the thickness direction is small. In this case, the thickness
coordinate is the X3 direction; therefore, the 633 stress component is
required to be continuous between the gage and surrounding material. The tan-
gential directions of the gage are the length and width dimensions along the

1 2 coordinates, so the strain coupled portion of the resistivity
response of ARll is due to Ylll and 722| components of the strain

tensor. For a thin gage that is bonded to the surrounding material, it follows
that the displacement across the gage-material interface is continuous; hence,
the 111] and 7221 strain components in the gage and in the adjacent

surrounding material are equal. Equations to represent this combination of
stress and strain dependent resistivity for the elastic gage response are
obtained by first expressing the Uss stress component in equations (3-7) as

x, and x

a function of strain; thus

055 = (Y33] + v0rpp] + Yool + Y531/ (1-20))E/(1+v) (3-23)
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Y33l = (QLV)(L-20)055/E = v(rp3 1 + Ypp1))/(1-v) (3-24)

Finally, Y33| of equation (3-24) is substituted into equation (3-5) to
obtain an expression of the elastic resistivity response for a gage oriented
normal to the x, coordinate in terms of the normal stress 633 and the

3
tangential strain components Ylll and 722| in the gage; namely,

RX !
(L + (L + (L=IRyl = W 1Dvy 1/(1-v)

R,, =
11 X2|X3|

+ (1-20)(R0| - 1)722|/(1-v) (3-25)

+ (1-2v)(l+v)(Rol - 1)033/(E(1-v)))

In the above expression, R11 resistivity depends on the strain components
Yll' and 722|, and the stress component 633; thus, it would again require
three independent resistivity gages before the strains Ylll' 722|, and the

stress 033 could be inferred. Conceptually, this is analogous to the three strain
response of equation (3-13) for the three different materials and a detailed

analysis is not repeated.

From the above analyses, whether an "ideally strain embedded®™ gage or for
the case of a coupled stress and strain gage, it is certainly clear that a gage
of a single material configuration is not sufficient to uniquely infer multi-
stress or multi-strain history responses. Furthermore, it has been demon-
strated that a triple material gage configuration is physically possible and
that for an "ideally" embedded case one can uniquely determine multi-strain
history responses of the gage material.

In practice, an embedded gage may not always respond as "ideally" assumed
in the above discussion, and the gage becomes an "inclusion" problem [19.22].
The "inclusion" problem occurs when the embedded gage does influence the res-
ponse of the surrounding material for which stress or strain 1s to be inferred.
Conditions for "ideally" embedded gage responses are not well established, but
depend on the material property parameters of the gage and surrounding
materials and on the dimensions and bonding of the gage to the surrounding
material. Small differences between material property parameters is desirable.
When small differences are not the case, then it is known from the composite
materials that the dimensions and bonding of the gage can significantly modify
the local stress-strain fields of the surrounding material. An effective way
of representing this modification is the shear-lag model developed for compo-

site material response [41,42].
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1v. Summary

Previous material models developed for the intrinsic resistivity
change due to recoverable deformations have been related to the stress tensor;
hence, the term piezoresistivity. However, the physical mechanisms associated
with changes of electron transport, or resistivity, in an atomic lattice
structure are more directly related to deformation measures and dislocation
defect structures of the atomic lattice. Using the concepts of discontinuum
mechanics which separates deformations into a recoverable function term and a
nonrecoverable functional term, a model for the intrinsic resistivity response
of a material was developed that had deformation measures of recoverable
strain tensor, dislocation dependent nonrecoverable strain tensor, and
dislocation density kinetics. In the simplest case, the recoverable strain is
the elastic strain, the nonrecoverable strain tensor reduces to an explicit
dislocation dependent plastic strain measures, and the dislocation density
kinetics term represents changes in the atomic lattice to account for mobile
electron density changes and electron-dislocation density cross-sectional
scattering changes. Therefore, this model for intrinsic resistivity of a
material relates physical aspects of electron band configurations and electron
scattering in terms of interatomic deformation measures dislocation defect
structures.

However, as discussed in Section II, the intrinsic resistivity of a
material is only part of the resistivity response that is observed during a
typical experimental configuration involving a deformation history of a
material specimen. This is because the deformation history also changes the
overall dimensions of the material specimen and results in a geometry
dependence. For spatially uniform deformations, which means that the
recoverable and nonrecoverable strains are uniform over the volume of the
material specimen, the geometry dependence can be represented in terms of the
strains.

Although non-uniformities in the initial dimensions of a material test
specimen were not analyzed in this report, it is believed that experimental
resistivity measurements on thin rectangular foils may have a high sensitivity
to non-uniform variations of the initial dimensions. This is mentioned as it
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could be one possible source of the differences in measured values for the
elastic-resistivity coefficients often discussed in the literature
[21,23,25,26].

The simplified elastic-plastic resistivity model of Section II generalizes
a previous model developed by Chen, Gupta, and Miles [23]. The
generalizations are due to the tensor dependence on the nonrecoverable
(plastic) strain tensor and on an explicit dislocation dependent defect
structure. Furthermore, a cross-coupling term between the recoverable strain
and the dislocation dependent defect structure was retained in the simplified
resistivity model so that the change in resistivity during an elastic
unloading from a plastic straining history value could be represented. This
type of generalization in the resistivity model is considered important for
the design of gages to measure and interpret residual stress states after
strong shock loading. At this time, however, further analysis is required to
relate the experimental data [23] to this (elastic-dislocation resistivity)
model. Such analysis is necessary to extend gage development into the
elastic-plastic range of material and resistivity response; otherwise, the
uncertainty of the interpretation of the stress measured will remain large.

The significant aspects that result from this development of a deformation
dependent model of resistivity are discussed in Section III. This section
describes in detail shear-independent intrinsic resistivity and the
geometrical resistivity responses of isotropic, elastic materials in terms of
strain and/or stress. This discussion leads to a conceptual design for a
triple material gage package that measures three simultaneous and separate
resistance changes as output. Under ideal strain embedding conditions of the
gage and when the three materials of the gage are "resistivity-independent",
then the gage output can be inverted to obtain the three independent diagonal
components of the strain tensor. This is important because, in most
experimental situations, measurement for multi-component values of the stress
or strain tensor is of interest. A coupled stress-strain analysis of triple
material gage response is described for cases where the ideal strain embedding
assumption is relaxed. This involves using both the strain and stress
dependent resistivity responses of the three materials contained in the gage,
then, coupling the material surrounding the gage to the materials of the gage
by a consistent set of displacement and stress continuity boundary conditions
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at the various material interfaces. As discussed by Gupta [22], this analysis
problem exists for all embedded gages; its resolution is the key to any
inference of the stress state in the surrounding material. Even for what
initially appears as one-dimensional cases without the embedded gage, the same
problem with the embedded gage becomes non-trivial because a consistent set of
interface boundary conditions in practical applications may suggest a
significant degree of three-dimensional coupling between the gage and the
surrounding material. This is probably most significant in low shear and
tensile strength materials such as high porosity rock and alluvium.

Certainly, when the initial case has a multi-component stress field that will
interact with the embedded gage, an understanding of the gage response coupled
to the surrounding material is required before the measured data can be

interpreted and the stress inferred.
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Ficure 3-1. YTTERBIUM RESISTIVITY RESPONSE DURING UNIAXIAL
ELASTIC-PLASTIC STRAIN HISTORY (Rer. 23),
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FIGURE 3-2. MANGANIN RESISTIVITY RESPONSE DURING UNIAXIAL ELASTIC-

PLASTIC STRAIN HI1sTORY (Rer. 23).
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